Last edited by Fenrinris
Thursday, July 23, 2020 | History

2 edition of Design for active and passive flutter suppression and gust alleviation found in the catalog.

Design for active and passive flutter suppression and gust alleviation

Mordechay Karpel

Design for active and passive flutter suppression and gust alleviation

by Mordechay Karpel

  • 229 Want to read
  • 17 Currently reading

Published by National Aeronautics and Space Administration, Scientific and Technical Information Branch, For sale by the National Technical Information Service, distributor in [Washington, D.C.], [Springfield, Va .
Written in English

    Subjects:
  • Aeroelasticity.,
  • Flutter (Aerodynamics)

  • Edition Notes

    StatementMordechay Karpel ; prepared for Langley Research Center under grant NGL-05-020-243.
    SeriesNASA contractor report -- 3482., NASA contractor report -- NASA CR-3482.
    ContributionsUnited States. National Aeronautics and Space Administration. Scientific and Technical Information Branch., Langley Research Center., Stanford University.
    The Physical Object
    Paginationvi, 110 p. :
    Number of Pages110
    ID Numbers
    Open LibraryOL17654453M

    Karpel, M. Design for active flutter suppression and gust alleviation using state-space aeroelastic modeling. J. Aircr. , 19, – [Google Scholar] ESDU. An Introduction to Rigid Aeroplane Response to Gusts and Atmospheric Turbulence; ESDU Cited by: 1. Active Flutter Suppression of a Nonlinear Aeroelastic System Using PI-Observer 3 α β k x AC EA MC=CG h α kβ L M k α h b Fig. 1 2-D wing-flap aeroelastic model. to suppress instability. This model is accurate for airfoils at low velocity and has.

    Adaptive Feedforward Control Design for Gust Loads Alleviation of Highly Flexible Aircraft Y. Wang and F. Li y China Academy of Aerospace Aerodynamics, Beijing, , China A. Da Ronchz University of Southampton, Southampton, S 1BJ, United Kingdom When prior knowledge of the plant controlled is available, feedforward control is pre-. suppression of flutter, achieved by either passive or active means [], may be considered as an inverse eigenvalue problem [9], often referred to as eigenvalue assignment. Passive techniques for flutter suppression may require mass balancing and structural stiffness or shape modifications.

    Passive measures do not involve mechanical or electrical systems. This is as opposed to 'active' design which makes use of active building services systems to create comfortable conditions, such as boilers and chillers, mechanical ventilation, electric lighting, and so on. Buildings will generally include both active and passive measures. FlexSys. An adaptive compliant wing designed by FlexSys Inc. features a variable-camber trailing edge which can be deflected up to ±10°, thus acting like a flap-equipped wing, but without the individual segments and gaps typical in a flap wing itself can be twisted up to 1° per foot of span. The wing's shape can be changed at a rate of 30° per second, which is ideal for gust.


Share this book
You might also like
Russia : the people, country, and government

Russia : the people, country, and government

Treatment of bipolar illness

Treatment of bipolar illness

Lowell G. Fuller.

Lowell G. Fuller.

Islam and Europe

Islam and Europe

Jack & Susan in 53

Jack & Susan in 53

Nuclear Safeguards Technology 1986 (Proceedings Series (International Atomic Energy Agency))

Nuclear Safeguards Technology 1986 (Proceedings Series (International Atomic Energy Agency))

oil and gas resources of New Mexico.

oil and gas resources of New Mexico.

Changing paradigm in breast cancer management

Changing paradigm in breast cancer management

Streets.

Streets.

One thousand evangelistic illustrations

One thousand evangelistic illustrations

History and present condition of the Barbary States

History and present condition of the Barbary States

stereoscope in ophthalmology

stereoscope in ophthalmology

Employment law in New York.

Employment law in New York.

Baa baa, black sheep

Baa baa, black sheep

Independent safety board authorization

Independent safety board authorization

Design for active and passive flutter suppression and gust alleviation by Mordechay Karpel Download PDF EPUB FB2

Get this from a library. Design for active and passive flutter suppression and gust alleviation. [Mordechay Karpel; United States. National Aeronautics and Space Administration. Scientific and Technical Information Branch.; Langley Research Center.; Stanford University.].

suppression (OAMS) system designed to dampen out a structural vibration in the wing. 23 Mar FAA and Boeing agree on -8 OAMS special condition. The XA Multi-utility Aeroelastic Demonstration (MAD) is an innovative modular unmanned air vehicle designed to test active flutter suppression and gust load Size: KB.

Active flutter suppression, which is a part of the group of flight vehicle technologies known as active controls, is an important contributor to the effective solution of aeroelastic instability problems when they pop up late in the development of a new aircraft or, if used from the start of the design process, it is a key element in multidisciplinary design optimization that could lead to Cited by: Recently it has been shown that active flutter suppression and gust alleviation problems for a thin airfoil can be solved using standard H ∞ and mixed H 2 /H ∞ control techniques.

The proposed solution depends on finite dimensional approximations of Theodorsen's function, which appears in the original infinite dimensional model of the by: 4. FLUTTER SUPPRESSION USING ACTIVE CONTROLS BASED ON THE CONCEPT OF AERODYNAMIC ENERGY 7.

Author(s) E. Nissim design, and test of gust-alleviation systems have been explored over a Flutter suppression implies, essentially, the control of structural modes Size: 4MB.

Flutter suppression and gust-alleviation systems using active controls tend to be very sensitive to system changes caused by different flight condi­ tions (flight speed, flight altitude, flight duration, and type of mission).

The aerodynamic energy concept (ref. 1) was formulated in an attempt to defineFile Size: 2MB. Experiments of active flutter control, buffet suppression, gust load alleviation, and sonic fatigue reduction are discussed.

Conclusions and directions for further work are presented at the end of. In fact, various active and passive control technologies have been developed for flutter suppression and gust alleviation, and some been applied to ai rcraft [1–5].

Comparing with the active control. Early attempts to develop active control technology for gust loads suppression followed World War II into the s (Ref. With the rapid development of control systems theory from the s to the s and s and the appearance of fast powerful actuators and rapidly improving control systems hardware, active flutter suppressionFile Size: KB.

T1 - Robust control design for active flutter suppression. AU - Theis, Julian. AU - Pfifer, Harald. AU - Seiler, Peter. PY - /1/1. Y1 - /1/1. N2 - Flutter is an unstable oscillation caused by the interaction of aerodynamics and structural dynamics.

It can lead to catastrophic failure and therefore must be strictly by: 1. Introduction. Active Flutter Suppression (AFS) has a great potential to suppress the flutter instability of a flight vehicle.

As reviewed by Mukhopadhyay (), the technique of AFS for aircraft structures has drawn much attention over the past decades. From the viewpoint of control design, a number of studies have focused on how to synthesize advanced controllers to stabilize a wing Cited by: In this project, the various methodologies were applied to design a flutter suppression system for the Benchmark Active Controls Technology (BACT) Wing.

This report describes a project at the University of Washington to design a multirate suppression system for the. suppression and structural load alleviation. This role is accomplished through an additional functionality of the primary flight control surfaces and of their actuation system.

A typical active control system for flutter suppression is designed to perform three functions: a) sensing the File Size: KB. Application of two design methods for active flutter suppression and wind-tunnel test results (NASA technical paper) [Newsom, Jerry R] on *FREE* shipping on qualifying offers.

Application of two design methods for active flutter suppression and wind-tunnel test results (NASA technical paper)Author: Jerry R Newsom. Active flutter suppression of a 3D-wing: preliminary design and assessment.

Part I. 5 W Fig. Wing with an active trailing-edge flap: geometry and deformations M w Fig. Detailed wing section with flap: displacements and aerodynamic forces For the proposed wing.

In fact, various active and passive control technologies have been developed for flutter suppression and gust alleviation, and some been applied to aircraft [1,2,3,4,5].Comparing with the active control system, a passive control device is usually simpler and more reliable, although, maybe, less by:   Karpel, M.: Design for Active and Passive Flutter Suppression and Gust Alleviation, vol.

National Aeronautics and Space Administration, Cited by: 2. aircraft design with active load alleviation and natural laminar flow a dissertation submitted to the department of aeronautics & astronautics and the committee on graduate studies of stanford university in partial fulfillment of the requirements for the degree of doctor of philosophy jia xu march File Size: 4MB.

increased the interest in active systems for gust load alleviation. One attractive feature of such systems is the possibility to deal simultaneously with ight stability augmentation systems, gust load alleviation and utter suppression [38]. In this work an active gust alleviation system is designed by the use of a static output feedback controller.

Development of an Active Flutter Suppression Research Plan Eli Livne, the William E. Boeing Department of Aeronautics and Astronautics, University of Washington, Seattle, WA ABSTRACT The utilization of active control systems for gust alleviation, load redistribution, flight control.

Karpel, M.: Design for Active and Passive Flutter Suppression and Gust Alleviation, vol. National Aeronautics and Space Administration, Scientific and Technical Cited by: 2.Design for Active and Passive Flutter Suppression and Gust Alleviation,” National Aeronautics and Space Administration, Washington, DC, Report No.

NASA CRCited by: 1. Experimental Model Based Feedback Control for Flutter Suppression and Gust Load Alleviation. Submitted by drupal on Wed, 10/23/ - Firm: ZONA Technology, Inc. Award Solicitation: Experimental Model Based Feedback Control for .